CAD Models to Real-World Images: A Practical Approach to Unsupervised Domain Adaptation in Industrial Object Classification

Dennis Ritter¹, Mike Hemberger², Marc Hönig³, Volker Stopp³, Erik Rodner⁴, and Kristian Hildebrand¹

¹ Berliner Hochschule f
ür Technik, ² nyris GmbH, ³ topex GmbH
 ⁴ KI-Werkstatt/FB2, University of Applied Sciences Berlin

Abstract

In this paper, we systematically analyze **unsupervised domain adaptation pipelines** for object classification in a challenging **industrial setting**. We emphasize critical design considerations when utilizing category-labeled CAD models for classifying real-world images. Our domain adaptation pipeline **outperforms SoTA** performance on the **VisDA-2017 benchmark**. We conclude by providing **practical guidelines** for practitioners seeking to implement cut-

ting-edge unsupervised domain adaptation techniques. Our code is available at

github.com/dritter-bht/synthnet-transfer-learning

Pipeline

1211-39-3Z

(IN22K)

(rendered)

unlabeled target domain data

Contribution

- **Competitive two-stage transfer learning UDA pipeline** for object classification in a challenging industrial setting
- First multi-domain (CAD, real) industrial image dataset comprising 102 machine parts
- Outperforming SoTA on VisDA-2017 classification benchmark
- Creating benchmark performance on our new topex-printer dataset

Motivation

- Machine-specific specialists are often required to quickly identify components, making it challenging for customers to independently recognize their machine parts
- **High cost of creating labeled images** for each component of complex machines often makes training automatic recognition systems unfeasible
- Companies own the computer-aided design (CAD) data of the parts, which can be rendered with any parameters and in any quantity

Topex-Printer Dataset

We present a two-domain-dataset for image-based machine part identification. It comprises 102 parts from a labeling machine and is designed to mimic real-world complexities, including distinguishing closely related classes. The dataset consists of 3,264 CAD-rendered images (32 per part) and 6,146 real images (6 to 137 per part) for domain adaptation and testing purposes.

Source Domain Synthetic 3D-object renders

Target Domain Real photos

Results

Method Pl Bcl Bus Car Hrs Knf Mcv Per Plt Skb Trn Tck Mean

	•			Cui			11105			ono			1110411
TVT	92.9	85.6	77.5	60.5	93.6	98.2	89.3	76.4	93.6	92.0	91.7	55.7	83.9
CDTRANS	97.1	90.5	82.4	77.5	96.6	96.1	93.6	88.6	97.9	86.9	90.3	62.8	88.4
SDAT 5	98.4	90.9	85.4	82.1	98.5	97.6	96.3	86.1	96.2	96.7	92.9	56.8	89.8
MIC	99.0	93.3	86.5	87.6	98.9	99.0	97.2	89.8	98.9	98.9	96.5	68.0	92.8
Ours w/o UDA	96.48	71.82	90.14	99.20	94.66	77.71	87.28	44.45	95.12	83.64	94.05	40.76	80.54
Ours	94.82	93.49	92.80	95.89	90.95	88.51	77.46	75.42	96.27	97.32	94.74	88.03	89.38
Ours w/o UDA .5	97.09	80.48	85.35	98.12	92.39	83.54	94.85	19.89	89.13	78.89	97.03	55.18	80.12
Ours S	97.96	95.15	95.81	98.64	98.34	95.68	80.12	83.87	99.39	94.68	96.61	93.85	93.47
									-	_			

Comparing accuracy to other literature on VisDA-2017 classification benchmark. Our approach outperforms recent SoTA in mean accuracy.

References

- 1. Kim, D., Wang, K., Sclaroff, S., Saenko, K.: A broad study of pre-training for domain generalization and adaptation. In: ECCV (2022)
- 2. Kumar, A., Raghunathan, A., Jones, R.M., Ma, T., Liang, P.: Fine-tuning can distort pretrained features and underperform out-of-distribution. In: ICLR (2022)
- 3. Long, M., Cao, Z., Wang, J., Jordan, M.I.: Conditional adversarial domain adaptation. In: NeurIPS (2017)
- 4. Jin, Y., Wang, X., Long, M., Wang, J.: Minimum class confusion for versatile domain adaptation. In: ECCV (2019)
- 5. Hoyer, L., Dai, D., Wang, H., Van Gool, L.: Mic: Masked image consistency for contextenhanced domain adaptation. In: CVPR (2023)
- 6. Peng, X., Usman, B., Kaushik, N., Wang, D., Hoffman, J., Saenko, K.: Visda: A synthetic-to-real benchmark for visual domain adaptation. In: CVPR-W (2018)

Hochschule für Technik und Wirtschaft Berlin

GEFÖRDERT VOM

topex